Linear transformations that preserve majorization, Schur concavity, and exchangeability
نویسندگان
چکیده
منابع مشابه
On certain semigroups of transformations that preserve double direction equivalence
Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).
متن کاملLinear transformations preserving log-concavity
In this paper, we prove that the linear transformation yi = i ∑ j=0 ( m+ i n+ j ) xj , i = 0, 1, 2, . . . preserves the log-concavity property. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملTwo Linear Transformations Preserving Log-Concavity
In this paper we prove that the linear transformation
متن کاملon certain semigroups of transformations that preserve double direction equivalence
let tx be the full transformation semigroups on the set x. for an equivalence e on x, let te(x) = {α ∈ tx : ∀(x, y) ∈ e ⇔ (xα, yα) ∈ e}it is known that te(x) is a subsemigroup of tx. in this paper, we discussthe green's *-relations, certain *-ideal and certain rees quotient semigroup for te(x).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1990
ISSN: 0024-3795
DOI: 10.1016/0024-3795(90)90339-e